
Programmable	Networks	with	Synthesis

Ahmed	ElHassany Petar	Tsankov Laurent	Vanbever Martin	Vechev

Network	Misconfigurations	are	Common

What	Makes	Network	Configuration	Hard?

A

B C

D
Network	N1

Network	N3

Network	N2

High-level,	
global	routing	
requirements

Low-level,	
local	router	

configurations

Multiple	interacting	routing	
protocols	(OSPF,	BGP,	..)

A

B C

D
Network	N1

Network	N3

Network	N2

R1:	Packets	from	N1 to	N2must	follow	the	path	A→ D
R2:	Packets	from	N1 to	N3must	follow	the	path	A→ B→ C→ D

OSPF	+	
Static	routes

Example

Example

A

B C

D
Network	N1

Network	N3

Network	N2

OSPF	+	
Static	routes

R1:	Packets	from	N1 to	N2must	follow	the	path	A→ D
R2:	Packets	from	N1 to	N3must	follow	the	path	A→ B→ C→ D

Example

A

B C

D
Network	N1

Network	N3

Network	N2

OSPF	link	
cost

R1:	Packets	from	N1 to	N2must	follow	the	path	A→ D
R2:	Packets	from	N1 to	N3must	follow	the	path	A→ B→ C→ D

10 10

10

10
10

10
10

Example

A

B C

D
Network	N1

Network	N3

Network	N2

R1:	Packets	from	N1 to	N2must	follow	the	path	A→ D
R2:	Packets	from	N1 to	N3must	follow	the	path	A→ B→ C→ D

10 10

10

1010
10

10

OSPF	link	
cost

Example

A

B C

D
Network	N1

Network	N3

Network	N2

R1:	Packets	from	N1 to	N2must	follow	the	path	A→ D
R2:	Packets	from	N1 to	N3must	follow	the	path	A→ B→ C→ D

10 10

10

1010
10

10

OSPF	link	
cost

Network NextHop
N3 B

Static	routes	table

Configure	A	to	
prefer	static	routes	

over	OSPF

Add	a	static	route	
to	A	configuration

Example

A

B C

D
Network	N1

Network	N3

Network	N2

R1:	Packets	from	N1 to	N2must	follow	the	path	A→ D
R2:	Packets	from	N1 to	N3must	follow	the	path	A→ B→ C→ D

10 10

10

1010
10

10

B	non-deterministically	
forwards	packets	for	N3	

to	either	A	or	C

Network NextHop
N3 B

Static	routes	table

Example

A

B C

D
Network	N1

Network	N3

Network	N2

R1:	Packets	from	N1 to	N2must	follow	the	path	A→ D
R2:	Packets	from	N1 to	N3must	follow	the	path	A→ B→ C→ D

10 10

5

1010
10

10

Network NextHop
N3 B

Static	routes	table

Lower	
cost	to	5

Example

A

B C

D
Network	N1

Network	N3

Network	N2

R1:	Packets	from	N1 to	N2must	follow	the	path	A→ D
R2:	Packets	from	N1 to	N3must	follow	the	path	A→ B→ C→ D

10 10

5

1010
10

10

Network NextHop
N3 B

Static	routes	table

Router	configurations	must	be	such	that:
1. A prefers	static	routes over	OSPF
2. A has	a	static	route	to	B for	N3
3. A → D→ N2must	be	lowest	cost	from	A to	N2
4. B →	C → D→ N3must	be	lowest	cost	from B to	N3

Lower	
cost	to	5

Current	Practice

Network	
topology

Routing	
requirements

Operators	manually	
configure	each	router

All	routers	are	
configured

Initially	not	
configured

Current	Practice

Network	
topology

Routing	
requirements

Operators	manually	
configure	each	router

All	routers	are	
configured

Problems and	Challenges
§ Diversity in	protocol	expressiveness
§ Protocol	dependencies
§ No	correctness guarantees

Initially	not	
configured

Wanted:	Programmable	Networks	with	Synthesis

Network	
topology

Routing	
requirements

Automatically	configure	
routers	with	synthesis

How	is	the	behavior	
of	routers	captured?

How	to	express	
relevant	requirements?

How	to	find	a	configuration	
that	conforms	to	the	

requirements?

Programmable	Networks	with	Synthesis:	Dimensions

Deployment	
scenarios

Routing	
protocols

Synthesis	
Techniques

Requirements

ISP
Enterprise

Symbolic	execution
Constraint	solving

CEGIS

Enumerative	learning

**SyNET:	http://synet.ethz.ch

Probabilistic

Incremental

BGPOSPF MPLS
Static	routesDeterministic

Datacenter

ECMP

Probabilistic
Gossip

Paths
Isolation

Reachability
Waypointing Failures

Congestion

(SyNET**)

Capturing	Network	Behavior

Express	routing	protocols,	along	with	their	
dependencies,	in	stratified	Datalog

Key	idea:

Datalog Example

bob

alice

carol

dave eve frank gwen

Family	tree

How	is	this	related	to	networks?

Input
𝑝𝑎𝑟𝑒𝑛𝑡(𝑏𝑜𝑏, 𝑎𝑙𝑖𝑐𝑒)
𝑝𝑎𝑟𝑒𝑛𝑡(𝑐𝑎𝑟𝑜𝑙, 𝑎𝑙𝑖𝑐𝑒)
…

Program
𝑎𝑛𝑐(𝑋, 𝑌) ← 𝑝𝑎𝑟𝑒𝑛𝑡(𝑋, 𝑌)
𝑎𝑛𝑐 𝑋, 𝑌 ← 𝑝𝑎𝑟𝑒𝑛𝑡 𝑋, 𝑍 , 𝑎𝑛𝑐(𝑍, 𝑌)

Query
𝑎𝑛𝑐 𝑑𝑎𝑣𝑒, 𝑎𝑙𝑖𝑐𝑒 ?

Datalog Syntax	(1/2)

Constants:

Predicates:
Variables:

𝐴𝒫(𝒞,𝒱) = 𝑝 𝑡<, … , 𝑡= 	 	𝑝 ∈ 𝒫, ∀0 ≤ 𝑖 ≤ 𝑛. 	𝑡D∈ 𝒞 ∪ 𝒱}
𝐴𝒫(𝒞) = 𝑝 𝑡<, … , 𝑡= 	 	𝑝 ∈ 𝒫, ∀0 ≤ 𝑖 ≤ 𝑛. 𝑡D ∈ 𝒞} Example:

𝑝𝑎𝑟𝑒𝑛𝑡(𝑑𝑎𝑣𝑒, 𝑎𝑙𝑖𝑐𝑒)

Example:	
𝑝𝑎𝑟𝑒𝑛𝑡(𝑋, 𝑌)

𝒞 = {𝑎𝑙𝑖𝑐𝑒, 𝑏𝑜𝑏, 𝑐𝑎𝑟𝑜𝑙, … }
𝒱 = {𝑋, 𝑌, … }
𝒫 = {𝑝𝑎𝑟𝑒𝑛𝑡, 𝑎𝑛𝑐, … }

Ground	atoms:

Atoms:

To	define	a	Datalog program,	we	need:

The	sets	above	can	be	used	to	construct	the	“atoms”	of	a	Datalog program:

Datalog Syntax	(1/2)

𝑎𝑛𝑐 𝑋, 𝑌 ← 𝑝𝑎𝑟𝑒𝑛𝑡 𝑋, 𝑍 , 𝑎𝑛𝑐(𝑍, 𝑌)Head

Body

A	Datalog program	is	well-formed	if	for	any	rule	in	the	program,	all	variables	
that	appear	in	the	head	also	appear	in	the	body

A	Datalog program	is	a	set	of	rules	of	the	form

Is	this	rule	well-formed	𝑎𝑛𝑐 𝑋, 𝑌 ← 𝑝𝑎𝑟𝑒𝑛𝑡 𝑌, 𝑍 ?

𝑎	 ← 𝑙<, … , 𝑙=
where	𝑎 is	an	atom	and	𝑙<, … , 𝑙= are	literals	of	the	form	𝑎 or	¬𝑎

Positive	
literal

Negative	
literal

Semantics	of	Positive Datalog Programs

𝑇J: ℐ → ℐConsequence	operator:

Interpretations: ℐ = 2O𝒫(𝒞)

𝑇J 𝐼 = 𝜎(𝑎)	 	𝑎 ← 𝑙<, … , 𝑙= ∈ 𝑃, ∀𝑖 ∈ 1…𝑛 . 𝐼 ⊢ 𝜎(𝑙D)}

The	semantics	of	a	positive	Datalog program	P is	given	by	the	least-fixed	point	of	TW

Each	Datalog program	𝑃 is	associated	with	a	consequence	operator	𝑇J:

Is	TW monotone	if	P	is	a	positive	Datalog program?

A	Datalog program	P is	positive if	the	negation	operator	does	not	appear	in	its	rules

How	can	we	compute	the	least-fixed	point	of	TW?

𝐼 ⊢ 𝑙D		if			𝑙D = 𝑎	and	𝑎 ∈ 𝐼
𝐼 ⊢ 𝑙D		if			𝑙D = ¬𝑎	and	𝑎 ∉ 𝐼

where:

(an	interpretation	𝐼 is	a	set	of	ground	atoms)

Substitutions: 𝜎:𝒱 → 𝒞 (a	substitution	maps	variables	to	constants)

Example
Compute	the	least-fixed	point	of	the	following	Datalog program:

defined	over	the	signature		𝒞 = 𝑎, 𝑏, 𝑐 , 𝒱 = 𝑋 , and	𝒫 = {𝑝, 𝑞, 𝑟}

𝑝(𝑎) ← 𝑞(𝑋)
𝑞 𝑏 ← 𝑟 𝑎 , 𝑝(𝑏)
𝑝(𝑏) ← 𝑟(𝑎)

Datalog Inputs

The	semantics	of	a	positive	Datalog program	P given	an	input I	for	P	is	given	by	
the	smallest	fixed	point	of	TW that	contains	I.	Let’s	denote	this	by	 𝑃 [.

We	can	split	the	set	𝒫 of	predicates	into	
1. input	predicates:	predicates	that	do	not	appear	in	the	head	of	rules,	and	
2. output	predicates:	all	remaining	predicates

𝑎𝑛𝑐(𝑋, 𝑌) ← 𝑝𝑎𝑟𝑒𝑛𝑡(𝑋, 𝑌)
𝑎𝑛𝑐 𝑋, 𝑌 ← 𝑝𝑎𝑟𝑒𝑛𝑡 𝑋, 𝑍 , 𝑎𝑛𝑐(𝑍, 𝑌)

Which	are	the	input/output	
predicates	of	this	program?

An	input for	a	program	𝑃 is	an	interpretation	𝐼 that	contains	only	atoms	
constructed	using	input	predicates

How	can	we	compute	 𝑃 [?

Datalog and	Negation

𝑝(𝑋) ← ¬𝑞(𝑋)
𝑞 𝑋 ← 𝑝(𝑋)
𝑝(𝑋) ← 𝑟(𝑋)

What	should	be	the	semantics	of	this	program?

Problem: For	a	Datalog program	𝑃 with	negation,	the	consequence	operator	
𝑇J is	not	guaranteed	to	be	monotone!

What	about	the	semantics	of	this	program? 𝑝(𝑋) ← ¬𝑞(𝑋)
𝑞(𝑋) ← 𝑟(𝑋)

This	Datalog
program	is	called	

“stratified”

Semantics	of	Stratified	Datalog
A	Datalog program	𝑃 is	stratified if	its	rules	can	be	partitioned	into	sets	
𝑃<,… , 𝑃= called	strata,	such	that:
1. for	every	predicate	𝑝,	all	rules	with	𝑝 in	their	heads	are	in	one	stratum	𝑃D
2. if	a	predicate	symbol	𝑝 occurs	in	a	positive	literal	in	𝑃D ,	then	all	rules	with	𝑝 in	their	

heads	are	in	a	stratum	𝑃\ with	𝑗 ≤ 𝑖
3. if	a	predicate	symbol	𝑝 occurs	in	a	negative	literal	in	𝑃D ,	then	all	rules	with	𝑝 in	their	

heads	are	in	a	stratum	𝑃\ with	𝑗 < 𝑖

The	semantics	of	a	stratified	Datalog program	𝑃,	with	strata	𝑃<,… , 𝑃=,	and	an	
input	𝐼 for	𝑃,	is	given	by	the	fixed-point	𝑀= where	
𝑀` = 𝐼,	and	𝑀D = 𝑃D abcd ,	for	𝑖 ∈ [1, 𝑛].

What	is	an	example	of	a	Datalog program	that	is/is	not	stratified?

Is	𝑀= unique	for	any	stratified	Datalog program?	What	if	we	partition	the	rules	into	
different	partitions?

Encoding	Network	Behavior	in	stratified	Datalog

Datalog (2/3	Graph	Reachability)

Input
𝑙𝑖𝑛𝑘(𝑛1, 𝑎)
𝑙𝑖𝑛𝑘(𝑎, 𝑏)
…

Program
𝑝𝑎𝑡ℎ(𝑋, 𝑌) ← 𝑙𝑖𝑛𝑘(𝑋, 𝑌)
𝑝𝑎𝑡ℎ 𝑋, 𝑌 ← 𝑙𝑖𝑛𝑘 𝑋, 𝑍 , 𝑝𝑎𝑡ℎ(𝑍, 𝑌)

Query
𝑝𝑎𝑡ℎ(𝑛1, 𝑛2)?

A

B C

DN1

N3

N2

Can	we	capture	the	network’s	forwarding	plane?

Datalog (3/3	Shortest-path	Routing)
Input
𝑙𝑖𝑛𝑘 𝑛<, 𝑎, 10

Program
𝑝𝑎𝑡ℎ 𝑅𝑜𝑢𝑡𝑒𝑟, 𝑁𝑒𝑡, 𝑁𝑒𝑡, 𝐶𝑜𝑠𝑡 ←
						𝑙𝑖𝑛𝑘 𝑅𝑜𝑢𝑡𝑒𝑟, 𝑁𝑒𝑡, 𝐶𝑜𝑠𝑡
𝑝𝑎𝑡ℎ 𝑅𝑜𝑢𝑡𝑒𝑟, 𝑁𝑒𝑡, 𝑁𝑒𝑥𝑡𝐻𝑜𝑝, 𝐶< + 𝐶q ←
						𝑙𝑖𝑛𝑘 𝑅𝑜𝑢𝑡𝑒𝑟, 𝑁𝑒𝑥𝑡𝐻𝑜𝑝, 𝐶< ,
						𝑝𝑎𝑡ℎ 𝑁𝑒𝑥𝑡𝐻𝑜𝑝, 𝑁𝑒𝑡, 𝑋, 𝐶q
𝑠𝑝 𝑅𝑜𝑢𝑡𝑒𝑟, 𝑁𝑒𝑡, 𝑁𝑒𝑥𝑡𝐻𝑜𝑝,𝑚𝑖𝑛 𝐶 ←
						𝑝𝑎𝑡ℎ 𝑅𝑜𝑢𝑡𝑒𝑟, 𝑁𝑒𝑡, 𝑁𝑒𝑥𝑡𝐻𝑜𝑝, 𝐶	
𝑓𝑤𝑑 𝑅𝑜𝑢𝑡𝑒𝑟, 𝑁𝑒𝑡, 𝑁𝑒𝑥𝑡𝐻𝑜𝑝 ←

𝑠𝑝 𝑅𝑜𝑢𝑡𝑒𝑟, 𝑁𝑒𝑡, 𝑁𝑒𝑥𝑡𝐻𝑜𝑝	, 𝐶

Query
𝑓𝑤𝑑 𝑎, 𝑛q, ?

A

B C

DN1

N3

N2

Add	OSPF	
cost	to	links

Captures	how	routers	
compute	their	forwarding	

entries	using	routing	
protocols

10
10

5

10
10 10

10

𝑓𝑤𝑑 𝑅𝑜𝑢𝑡𝑒𝑟, 𝑁𝑒𝑡, 𝑁𝑒𝑥𝑡𝐻𝑜𝑝 ←

𝑙𝑖𝑛𝑘(𝑛<, 𝑎, 10) Captures	the	router	
configuration

𝑓𝑤𝑑(𝑎, 𝑛q, ?)

Checks	a	property	on	
the	forwarding	plane

Routing	Requirements	as	Datalog Queries

Paths
Packets	for	traffic	class	𝑇𝐶 must	follow	the	path	
𝑟< → ⋯ → 𝑟=

𝑓𝑤𝑑 𝑟<, 𝑡𝑐, 𝑟q ∧ ⋯∧ 𝑓𝑤𝑑 𝑟=w<, 𝑡𝑐, 𝑟=

Routing	Requirements	as	Datalog Queries

Paths
Packets	for	traffic	class	𝑇𝐶 must	follow	the	path	
𝑟< → ⋯ → 𝑟=

Traffic	isolation
The	paths	for	two	distinct	traffic	classes	𝑡𝑐<	and	𝑡𝑐q	do	
not	share	links	in	the	same	direction

𝑓𝑤𝑑 𝑟<, 𝑡𝑐, 𝑟q ∧ ⋯∧ 𝑓𝑤𝑑 𝑟=w<, 𝑡𝑐, 𝑟=

∀𝑅<, 𝑅q. 𝑓𝑤𝑑 𝑅<, 𝑡𝑐<, 𝑅q ⇒ ¬𝑓𝑤𝑑 𝑅<, 𝑡𝑐q, 𝑅q

Routing	Requirements	as	Datalog Queries

Paths
Packets	for	traffic	class	𝑇𝐶 must	follow	the	path	
𝑟< → ⋯ → 𝑟=

Traffic	isolation
The	paths	for	two	distinct	traffic	classes	𝑡𝑐<	and	𝑡𝑐q	do	
not	share	links	in	the	same	direction

𝑓𝑤𝑑 𝑟<, 𝑡𝑐, 𝑟q ∧ ⋯∧ 𝑓𝑤𝑑 𝑟=w<, 𝑡𝑐, 𝑟=

∀𝑅<, 𝑅q. 𝑓𝑤𝑑 𝑅<, 𝑡𝑐<, 𝑅q ⇒ ¬𝑓𝑤𝑑 𝑅<, 𝑡𝑐q, 𝑅q

Reachability
Packets	for	traffic	class	𝑡𝑐 can	reach	router	𝑟q	from	router	𝑟<

𝑟𝑒𝑎𝑐ℎ(𝑟<, 𝑡𝑐, 𝑟q)

Routing	Requirements	as	Datalog Queries

Paths
Packets	for	traffic	class	𝑇𝐶 must	follow	the	path	
𝑟< → ⋯ → 𝑟=

Traffic	isolation
The	paths	for	two	distinct	traffic	classes	𝑡𝑐<	and	𝑡𝑐q	do	
not	share	links	in	the	same	direction

𝑓𝑤𝑑 𝑟<, 𝑡𝑐, 𝑟q ∧ ⋯∧ 𝑓𝑤𝑑 𝑟=w<, 𝑡𝑐, 𝑟=

∀𝑅<, 𝑅q. 𝑓𝑤𝑑 𝑅<, 𝑡𝑐<, 𝑅q ⇒ ¬𝑓𝑤𝑑 𝑅<, 𝑡𝑐q, 𝑅q

Reachability
Packets	for	traffic	class	𝑡𝑐 can	reach	router	𝑟q	from	router	𝑟<

𝑟𝑒𝑎𝑐ℎ(𝑟<, 𝑡𝑐, 𝑟q)

∀𝑇𝐶, 𝑅. ¬𝑟𝑒𝑎𝑐ℎ(𝑅, 𝑇𝐶, 𝑅)Loop-freeness
The	forwarding	plane	has	no	loops

Analysis	of	Network	Configurations	in	Datalog

Analysis	of	Network	Configurations	in	Datalog

Analysis	question:	
Does	the	network	𝑵 configured	with	
𝑪 satisfy	the	requirements	𝑹?

Query	entailment:	
Does	𝑷, 𝑰 ⊨ 𝑸	hold?

Datalog program		𝑷

Datalog input 𝑰

Datalog query 𝑸

Network	specification		𝑵
(OSPF,	BGP,	MPLS,	…)

Network-wide	configuration		𝑪
(protocol	configurations	for	routers)

Routing	requirements		𝑹
(isolation,	reachability,	reliability)

Analysis	of	Network	Configurations	in	Datalog

Analysis	question:	
Does	the	network	𝑵 configured	with	
𝑪 satisfy	the	requirements	𝑹?

Query	entailment:	
Does	𝑷, 𝑰 ⊨ 𝑸	hold?

Datalog program		𝑷

Datalog input 𝑰

Datalog query 𝑸

Network	specification		𝑵
(OSPF,	BGP,	MPLS,	…)

Network-wide	configuration		𝑪
(protocol	configurations	for	routers)

Routing	requirements		𝑹
(isolation,	reachability,	reliability)

Theorem: Query	entailment	in	Datalog
is	in	PTIME

Network-wide	Configuration	Synthesis

Network-wide	Configuration	Synthesis

Synthesis	problem:	
Find	a	configuration	𝑪 such	that	𝑵
configured	with	𝑪 satisfies	𝑹

(Input)	Synthesis	problem:	
Find	an	input	𝑰 such	that	𝑷, 𝑰 ⊨ 𝑸

Network	specification		𝑵
(OSPF,	BGP,	MPLS,	…)

Network-wide	configuration		𝑪
(protocol	configurations	for	routers)

Routing	requirements		𝑹
(isolation,	reachability,	reliability)

Datalog	input 𝑰

Datalog program		𝑷

Datalog query 𝑸

Network-wide	Configuration	Synthesis

Synthesis	problem:	
Find	a	configuration	𝑪 such	that	𝑵
configured	with	𝑪 satisfies	𝑹

(Input)	Synthesis	problem:	
Find	an	input	𝑰 such	that	𝑷, 𝑰 ⊨ 𝑸

Network	specification		𝑵
(OSPF,	BGP,	MPLS,	…)

Network-wide	configuration		𝑪
(protocol	configurations	for	routers)

Routing	requirements		𝑹
(isolation,	reachability,	reliability)

Datalog	input 𝑰

Datalog program		𝑷

Datalog query 𝑸

Problems:
§ No	input	synthesis	tools	for	Datalog
§ Problem	is	undecidable

Input	Synthesis	for	Datalog

Key	idea: Reduce	to	solving	SMT	constraints

Input	Synthesis	for	Positive	Datalog
(First	Attempt)

Datalog	program		𝑷 Datalog	query	𝑸

SMT	Constraints	𝝍

𝑝𝑎𝑡ℎ 𝑋, 𝑌 ← 𝑙𝑖𝑛𝑘 𝑋, 𝑌
𝑝𝑎𝑡ℎ 𝑋, 𝑌 ← 𝑙𝑖𝑛𝑘 𝑋, 𝑍 , 𝑝𝑎𝑡ℎ(𝑍, 𝑌)

∀𝑋, 𝑌. 𝑝𝑎𝑡ℎ 𝑋, 𝑌 ⇐ 𝑙𝑖𝑛𝑘 𝑋, 𝑌
∀𝑋, 𝑌. 𝑝𝑎𝑡ℎ 𝑋, 𝑌 ⇐ ∃𝑍. 𝑙𝑖𝑛𝑘 𝑋, 𝑍 	⋀	𝑝𝑎𝑡ℎ 𝑍, 𝑌
𝑝𝑎𝑡ℎ 𝑎, 𝑐 	∧ 	¬𝑙𝑖𝑛𝑘 𝑎, 𝑐

𝑝𝑎𝑡ℎ 𝑎, 𝑐 	∧ 	¬𝑙𝑖𝑛𝑘 𝑎, 𝑐

∅

Solve	SMT	constraints

Datalog	input	𝑰

𝑝𝑎𝑡ℎ(𝑎, 𝑐) Model	𝑴 ⊨ 𝝍
Derive	input	(by	project	on	
input	predicates)

Generate	SMT	constraints
Easy	encoding…
unfortunately	it	
does	not	work

Unfortunately,	
we	get	𝑃, 𝐼 ⊭ 𝑄

Input	Synthesis	for	Positive	Datalog (1/2)

Datalog	program		𝑷 Datalog query	𝑸

SMT	Constraints	𝝍

𝑝𝑎𝑡ℎ 𝑋, 𝑌 ← 𝑙𝑖𝑛𝑘 𝑋, 𝑌
𝑝𝑎𝑡ℎ 𝑋, 𝑌 ← 𝑙𝑖𝑛𝑘 𝑋, 𝑍 , 𝑝𝑎𝑡ℎ(𝑍, 𝑌)

∀𝑋, 𝑌. 𝑝𝑎𝑡ℎ< 𝑋, 𝑌 ⇔ 𝑙𝑖𝑛𝑘 𝑋, 𝑌
∀𝑋, 𝑌. 𝑝𝑎𝑡ℎq 𝑋, 𝑌 ⇔ 𝑙𝑖𝑛𝑘 𝑋, 𝑌 	⋁	 ∃𝑍. (𝑙𝑖𝑛𝑘 𝑋, 𝑍 	⋀	𝑝𝑎𝑡ℎ< 𝑍, 𝑌
𝑝𝑎𝑡ℎq 𝑎, 𝑐 	∧ 	¬𝑙𝑖𝑛𝑘 𝑎, 𝑐

𝑝𝑎𝑡ℎ 𝑎, 𝑐 	∧ 	¬𝑙𝑖𝑛𝑘 𝑎, 𝑐

𝑙𝑖𝑛𝑘 𝑎, 𝑏 , 𝑙𝑖𝑛𝑘 𝑏, 𝑐

Solve	SMT	constraints

Datalog	input	𝑰

𝑙𝑖𝑛𝑘 𝑎, 𝑏 , 𝑙𝑖𝑛𝑘 𝑏, 𝑐 ,
𝑝𝑎𝑡ℎ< 𝑎, 𝑏 , 𝑝𝑎𝑡ℎ< 𝑏, 𝑐
𝑝𝑎𝑡ℎq 𝑎, 𝑏 , 𝑝𝑎𝑡ℎq 𝑏, 𝑐 , 𝑝𝑎𝑡ℎq 𝑎, 𝑐 Model	𝑴 ⊨ 𝝍

Derive	input

Generate	SMT	constraints Bounded	unrolling	
for	positive	queries

𝑝𝑎𝑡ℎ 𝑎, 𝑐 is	a	
positive	query

Input	Synthesis	for	Positive	Datalog (2/2)

Datalog	program		𝑷 Datalog query	𝑸

SMT	constraints	𝝍

𝑝𝑎𝑡ℎ 𝑋, 𝑌 ← 𝑙𝑖𝑛𝑘 𝑋, 𝑌
𝑝𝑎𝑡ℎ 𝑋, 𝑌 ← 𝑙𝑖𝑛𝑘 𝑋, 𝑍 , 𝑝𝑎𝑡ℎ(𝑍, 𝑌)

∀𝑋, 𝑌. 𝑝𝑎𝑡ℎ 𝑋, 𝑌 ⇐ 𝑙𝑖𝑛𝑘 𝑋, 𝑌
∀𝑋, 𝑌. 𝑝𝑎𝑡ℎ 𝑋, 𝑌 ⇐ ∃𝑍. 𝑙𝑖𝑛𝑘 𝑋, 𝑍 	⋀	𝑝𝑎𝑡ℎ 𝑍, 𝑌
¬𝑝𝑎𝑡ℎ 𝑎, 𝑐 	∧ 	¬𝑙𝑖𝑛𝑘 𝑎, 𝑐

¬𝑝𝑎𝑡ℎ 𝑎, 𝑐 	∧ 	¬𝑙𝑖𝑛𝑘 𝑎, 𝑐

{}

Solve	SMT	constraints

Datalog	input	𝑰

{} Model	𝑴 ⊨ 𝝍
Derive	input

Generate	SMT	constraints No	unrolling	for	
negative	queries

𝑝𝑎𝑡ℎ 𝑎, 𝑐 is	a	
negative	query

Input	Synthesis	for	Positive	Datalog (2/2)

Datalog	program		𝑷 Datalog query	𝑸

SMT	Constraints	𝝍

𝑝𝑎𝑡ℎ 𝑋, 𝑌 ← 𝑙𝑖𝑛𝑘 𝑋, 𝑌
𝑝𝑎𝑡ℎ 𝑋, 𝑌 ← 𝑙𝑖𝑛𝑘 𝑋, 𝑍 , 𝑝𝑎𝑡ℎ(𝑍, 𝑌)

∀𝑋, 𝑌. 𝑝𝑎𝑡ℎ 𝑋, 𝑌 ⇐ 𝑙𝑖𝑛𝑘 𝑋, 𝑌
∀𝑋, 𝑌. 𝑝𝑎𝑡ℎ 𝑋, 𝑌 ⇐ ∃𝑍. 𝑙𝑖𝑛𝑘 𝑋, 𝑍 	⋀	𝑝𝑎𝑡ℎ 𝑍, 𝑌
¬𝑝𝑎𝑡ℎ 𝑎, 𝑐 	∧ 	¬𝑙𝑖𝑛𝑘 𝑎, 𝑐

¬𝑝𝑎𝑡ℎ 𝑎, 𝑐 	∧ 	¬𝑙𝑖𝑛𝑘 𝑎, 𝑐

{}

Solve	SMT	constraints

Datalog	input	𝑰

{} Model	𝑴 ⊨ 𝝍
Derive	input

Generate	SMT	constraints No	unrolling	for	
negative	queries

𝑝𝑎𝑡ℎ 𝑎, 𝑐 is	a	
negative	query

Summary:	
• Unroll	rules	for	positive	queries,	do	not	unrolling	rules	for	negative	queries
• Combine	both	kinds	of	constraints	for	constraints	that	contain	both	positive/negative	
queries.

Input	Synthesis	for	Stratified Datalog
Suppose	we	have	a	program	P	with	strata	𝑃<,… , 𝑃=,	and	a	query	𝑄.

High-level	idea:

𝑃< 𝑃=wq 𝑃=w< 𝑃=

Synth	𝑃=

Synth	𝑃=:	Compute	input	𝐼= for	stratum	𝑃= such	that	 𝑃= [� satisfies	𝑄.

Synth	𝑃=w< …𝑃<: Compute	input	𝐼D for	stratum	𝑃D such	that	 𝑃D [b produces	the	input	𝐼D�<
synthesized	by	the	previous	step

Synth	𝑃=w<

𝑃q

Back	step:	Backtrack	to	step	Synth	𝑃D if	the	step	Synth	𝑃Dw< returns	unsat

Back	step Back	stepBack	step

Synth	𝑃<

Network-wide	Configuration	Synthesis

Network	
topology

Routing	
requirements

Automatically	configure	
routers	with	synthesis

Encode	as	a	
Datalog program

Constraints	on	the	
forwarding	plane	

computed	by	the	routers

Via	reduction	to	
input	synthesis	for	

Datalog

Datalog input	
identifies	correct	
configuration

Software	Synthesis	@	SRL

Probabilistic

Computer
networks

Security	and	
privacy

DatacentersModern	
architectures

Intent Desired
properties

Software	Synthesis
Constraint-based

Big	Code

Data	science

http://www.srl.inf.ethz.ch/

Develop	new	synthesis	techniques	to	solve	practical	system	challenges

CEGIS

Application
domains

Oracle-guided

End-user	
programming

Implementation

Implementation

The	SyNET system	(http://synet.ethz.ch)
§ Written	in	Python (≈ 4𝐾 lines	of	code)
§ Protocols	encoded	in	stratified	Datalog (≈ 100 rules)
§ Uses	the	Z3 constraint	solver.	Relies	on	linear	integer	
arithmetic	theories	(LIA).

§ Outputs	CISCO configurations
§ Supports	BGP,	OSPF,	and	static	routes

Network-specific	optimizations
§ Partial	evaluator	for	Datalog
§ Protocol-specific	constraints

! A snippet from router A
interface f0/1
ip address 10.0.0.2 255.255.255.254
ip ospf cost 10
description "To B"

interface f0/0
ip address 10.0.0.0 255.255.255.254
ip ospf cost 65530
description "To C"

interface f1/0
ip address 10.0.0.4 255.255.255.254
ip ospf cost 65530
description "To D"

!

Sample	CISCO configuration	
output	by	SyNET

Experiments

Experiment

Protocols	/ #	Traffic	classes 1	class 5	classes 10	classes

Static 1.3s 2.0s 4.0s

Static	+	OSPF 9.0s 21.3s 49.3s

Static	+	OSPF	+	BGP 13.3s 22.7s 1m19.7s

US-based	network	connecting	major	
universities	and	research	institutes	

Synthesis	Times

Scalability	Experiment

9 16 25 36 49 64

Static

Static	+	OSPF

Static	+	OSPF	+	BGP

Synthesis	Time	[s]

#	of	routers

0

10

102

103

104

105

§ Grid	topologies	with	up	to	64	routers
§ Requirements	for	10	traffic	classes

<	1h	for	static	routes

<	24h	for	Static	+	
OSPF

>24h	for	Static	+	OSPF	+	
BGP	and	networks	with	

>36	routers

Summary:	Programmable	Networks	with	Synthesis

B
High-level,	

global	routing	
requirements

Low-level,	
local	router	

configurations

Global	requirements
vs	local	configurations

Network-wide	
configuration	synthesis

Approach	scales	to	
realistic	problems

For	more	details	read	this	paper:	https://arxiv.org/abs/1611.02537

