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Network	Misconfigurations	are	Common



What	Makes	Network	Configuration	Hard?
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Router	configurations	must	be	such	that:
1. A prefers	static	routes over	OSPF
2. A has	a	static	route	to	B for	N3
3. A → D→ N2must	be	lowest	cost	from	A to	N2
4. B →	C → D→ N3must	be	lowest	cost	from B to	N3

Lower	
cost	to	5
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Operators	manually	
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All	routers	are	
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Current	Practice

Network	
topology

Routing	
requirements

Operators	manually	
configure	each	router

All	routers	are	
configured

Problems and	Challenges
§ Diversity in	protocol	expressiveness
§ Protocol	dependencies
§ No	correctness guarantees

Initially	not	
configured



Wanted:	Programmable	Networks	with	Synthesis

Network	
topology

Routing	
requirements

Automatically	configure	
routers	with	synthesis

How	is	the	behavior	
of	routers	captured?

How	to	express	
relevant	requirements?

How	to	find	a	configuration	
that	conforms	to	the	

requirements?



Programmable	Networks	with	Synthesis:	Dimensions

Deployment	
scenarios

Routing	
protocols

Synthesis	
Techniques

Requirements

ISP
Enterprise

Symbolic	execution
Constraint	solving

CEGIS

Enumerative	learning

**SyNET:	http://synet.ethz.ch

Probabilistic

Incremental

BGPOSPF MPLS
Static	routesDeterministic

Datacenter

ECMP

Probabilistic
Gossip

Paths
Isolation

Reachability
Waypointing Failures

Congestion

(SyNET**)



Capturing	Network	Behavior

Express	routing	protocols,	along	with	their	
dependencies,	in	stratified	Datalog

Key	idea:



Datalog Example

bob

alice

carol

dave eve frank gwen

Family	tree

How	is	this	related	to	networks?

Input
𝑝𝑎𝑟𝑒𝑛𝑡(𝑏𝑜𝑏, 𝑎𝑙𝑖𝑐𝑒)
𝑝𝑎𝑟𝑒𝑛𝑡(𝑐𝑎𝑟𝑜𝑙, 𝑎𝑙𝑖𝑐𝑒)
…

Program
𝑎𝑛𝑐(𝑋, 𝑌) ← 𝑝𝑎𝑟𝑒𝑛𝑡(𝑋, 𝑌)
𝑎𝑛𝑐 𝑋, 𝑌 ← 𝑝𝑎𝑟𝑒𝑛𝑡 𝑋, 𝑍 , 𝑎𝑛𝑐(𝑍, 𝑌)

Query
𝑎𝑛𝑐 𝑑𝑎𝑣𝑒, 𝑎𝑙𝑖𝑐𝑒 ?



Datalog Syntax	(1/2)

Constants:

Predicates:
Variables:

𝐴𝒫(𝒞,𝒱) = 𝑝 𝑡<, … , 𝑡= 	 	𝑝 ∈ 𝒫, ∀0 ≤ 𝑖 ≤ 𝑛. 	𝑡D∈ 𝒞 ∪ 𝒱}
𝐴𝒫(𝒞) = 𝑝 𝑡<, … , 𝑡= 	 	𝑝 ∈ 𝒫, ∀0 ≤ 𝑖 ≤ 𝑛. 𝑡D ∈ 𝒞} Example:

𝑝𝑎𝑟𝑒𝑛𝑡(𝑑𝑎𝑣𝑒, 𝑎𝑙𝑖𝑐𝑒)

Example:	
𝑝𝑎𝑟𝑒𝑛𝑡(𝑋, 𝑌)

𝒞 = {𝑎𝑙𝑖𝑐𝑒, 𝑏𝑜𝑏, 𝑐𝑎𝑟𝑜𝑙, … }
𝒱 = {𝑋, 𝑌, … }
𝒫 = {𝑝𝑎𝑟𝑒𝑛𝑡, 𝑎𝑛𝑐, … }

Ground	atoms:

Atoms:

To	define	a	Datalog program,	we	need:

The	sets	above	can	be	used	to	construct	the	“atoms”	of	a	Datalog program:



Datalog Syntax	(1/2)

𝑎𝑛𝑐 𝑋, 𝑌 ← 𝑝𝑎𝑟𝑒𝑛𝑡 𝑋, 𝑍 , 𝑎𝑛𝑐(𝑍, 𝑌)Head

Body

A	Datalog program	is	well-formed	if	for	any	rule	in	the	program,	all	variables	
that	appear	in	the	head	also	appear	in	the	body

A	Datalog program	is	a	set	of	rules	of	the	form

Is	this	rule	well-formed	𝑎𝑛𝑐 𝑋, 𝑌 ← 𝑝𝑎𝑟𝑒𝑛𝑡 𝑌, 𝑍 ?

𝑎	 ← 𝑙<, … , 𝑙=
where	𝑎 is	an	atom	and	𝑙<, … , 𝑙= are	literals	of	the	form	𝑎 or	¬𝑎

Positive	
literal

Negative	
literal



Semantics	of	Positive Datalog Programs

𝑇J: ℐ → ℐConsequence	operator:

Interpretations: ℐ = 2O𝒫(𝒞)

𝑇J 𝐼 = 𝜎(𝑎)	 	𝑎 ← 𝑙<, … , 𝑙= ∈ 𝑃, ∀𝑖 ∈ 1…𝑛 . 𝐼 ⊢ 𝜎(𝑙D)}

The	semantics	of	a	positive	Datalog program	P is	given	by	the	least-fixed	point	of	TW

Each	Datalog program	𝑃 is	associated	with	a	consequence	operator	𝑇J:

Is	TW monotone	if	P	is	a	positive	Datalog program?

A	Datalog program	P is	positive if	the	negation	operator	does	not	appear	in	its	rules

How	can	we	compute	the	least-fixed	point	of	TW?

𝐼 ⊢ 𝑙D		if			𝑙D = 𝑎	and	𝑎 ∈ 𝐼
𝐼 ⊢ 𝑙D		if			𝑙D = ¬𝑎	and	𝑎 ∉ 𝐼

where:

(an	interpretation	𝐼 is	a	set	of	ground	atoms)

Substitutions: 𝜎:𝒱 → 𝒞 (a	substitution	maps	variables	to	constants)



Example
Compute	the	least-fixed	point	of	the	following	Datalog program:

defined	over	the	signature		𝒞 = 𝑎, 𝑏, 𝑐 , 𝒱 = 𝑋 , and	𝒫 = {𝑝, 𝑞, 𝑟}

𝑝(𝑎) ← 𝑞(𝑋)
𝑞 𝑏 ← 𝑟 𝑎 , 𝑝(𝑏)
𝑝(𝑏) ← 𝑟(𝑎)



Datalog Inputs

The	semantics	of	a	positive	Datalog program	P given	an	input I	for	P	is	given	by	
the	smallest	fixed	point	of	TW that	contains	I.	Let’s	denote	this	by	 𝑃 [.

We	can	split	the	set	𝒫 of	predicates	into	
1. input	predicates:	predicates	that	do	not	appear	in	the	head	of	rules,	and	
2. output	predicates:	all	remaining	predicates

𝑎𝑛𝑐(𝑋, 𝑌) ← 𝑝𝑎𝑟𝑒𝑛𝑡(𝑋, 𝑌)
𝑎𝑛𝑐 𝑋, 𝑌 ← 𝑝𝑎𝑟𝑒𝑛𝑡 𝑋, 𝑍 , 𝑎𝑛𝑐(𝑍, 𝑌)

Which	are	the	input/output	
predicates	of	this	program?

An	input for	a	program	𝑃 is	an	interpretation	𝐼 that	contains	only	atoms	
constructed	using	input	predicates

How	can	we	compute	 𝑃 [?



Datalog and	Negation

𝑝(𝑋) ← ¬𝑞(𝑋)
𝑞 𝑋 ← 𝑝(𝑋)
𝑝(𝑋) ← 𝑟(𝑋)

What	should	be	the	semantics	of	this	program?

Problem: For	a	Datalog program	𝑃 with	negation,	the	consequence	operator	
𝑇J is	not	guaranteed	to	be	monotone!

What	about	the	semantics	of	this	program? 𝑝(𝑋) ← ¬𝑞(𝑋)
𝑞(𝑋) ← 𝑟(𝑋)

This	Datalog
program	is	called	

“stratified”



Semantics	of	Stratified	Datalog
A	Datalog program	𝑃 is	stratified if	its	rules	can	be	partitioned	into	sets	
𝑃<,… , 𝑃= called	strata,	such	that:
1. for	every	predicate	𝑝,	all	rules	with	𝑝 in	their	heads	are	in	one	stratum	𝑃D
2. if	a	predicate	symbol	𝑝 occurs	in	a	positive	literal	in	𝑃D ,	then	all	rules	with	𝑝 in	their	

heads	are	in	a	stratum	𝑃\ with	𝑗 ≤ 𝑖
3. if	a	predicate	symbol	𝑝 occurs	in	a	negative	literal	in	𝑃D ,	then	all	rules	with	𝑝 in	their	

heads	are	in	a	stratum	𝑃\ with	𝑗 < 𝑖

The	semantics	of	a	stratified	Datalog program	𝑃,	with	strata	𝑃<,… , 𝑃=,	and	an	
input	𝐼 for	𝑃,	is	given	by	the	fixed-point	𝑀= where	
𝑀` = 𝐼,	and	𝑀D = 𝑃D abcd ,	for	𝑖 ∈ [1, 𝑛].

What	is	an	example	of	a	Datalog program	that	is/is	not	stratified?

Is	𝑀= unique	for	any	stratified	Datalog program?	What	if	we	partition	the	rules	into	
different	partitions?



Encoding	Network	Behavior	in	stratified	Datalog



Datalog (2/3	Graph	Reachability)

Input
𝑙𝑖𝑛𝑘(𝑛1, 𝑎)
𝑙𝑖𝑛𝑘(𝑎, 𝑏)
…

Program
𝑝𝑎𝑡ℎ(𝑋, 𝑌) ← 𝑙𝑖𝑛𝑘(𝑋, 𝑌)
𝑝𝑎𝑡ℎ 𝑋, 𝑌 ← 𝑙𝑖𝑛𝑘 𝑋, 𝑍 , 𝑝𝑎𝑡ℎ(𝑍, 𝑌)

Query
𝑝𝑎𝑡ℎ(𝑛1, 𝑛2)?

A

B C

DN1

N3

N2

Can	we	capture	the	network’s	forwarding	plane?



Datalog (3/3	Shortest-path	Routing)
Input
𝑙𝑖𝑛𝑘 𝑛<, 𝑎, 10

Program
𝑝𝑎𝑡ℎ 𝑅𝑜𝑢𝑡𝑒𝑟, 𝑁𝑒𝑡, 𝑁𝑒𝑡, 𝐶𝑜𝑠𝑡 ←
						𝑙𝑖𝑛𝑘 𝑅𝑜𝑢𝑡𝑒𝑟, 𝑁𝑒𝑡, 𝐶𝑜𝑠𝑡
𝑝𝑎𝑡ℎ 𝑅𝑜𝑢𝑡𝑒𝑟, 𝑁𝑒𝑡, 𝑁𝑒𝑥𝑡𝐻𝑜𝑝, 𝐶< + 𝐶q ←
						𝑙𝑖𝑛𝑘 𝑅𝑜𝑢𝑡𝑒𝑟, 𝑁𝑒𝑥𝑡𝐻𝑜𝑝, 𝐶< ,
						𝑝𝑎𝑡ℎ 𝑁𝑒𝑥𝑡𝐻𝑜𝑝, 𝑁𝑒𝑡, 𝑋, 𝐶q
𝑠𝑝 𝑅𝑜𝑢𝑡𝑒𝑟, 𝑁𝑒𝑡, 𝑁𝑒𝑥𝑡𝐻𝑜𝑝,𝑚𝑖𝑛 𝐶 ←
						𝑝𝑎𝑡ℎ 𝑅𝑜𝑢𝑡𝑒𝑟, 𝑁𝑒𝑡, 𝑁𝑒𝑥𝑡𝐻𝑜𝑝, 𝐶	
𝑓𝑤𝑑 𝑅𝑜𝑢𝑡𝑒𝑟, 𝑁𝑒𝑡, 𝑁𝑒𝑥𝑡𝐻𝑜𝑝 ←

𝑠𝑝 𝑅𝑜𝑢𝑡𝑒𝑟, 𝑁𝑒𝑡, 𝑁𝑒𝑥𝑡𝐻𝑜𝑝	, 𝐶

Query
𝑓𝑤𝑑 𝑎, 𝑛q, ?

A

B C

DN1

N3

N2

Add	OSPF	
cost	to	links

Captures	how	routers	
compute	their	forwarding	

entries	using	routing	
protocols

10
10

5

10
10 10

10

𝑓𝑤𝑑 𝑅𝑜𝑢𝑡𝑒𝑟, 𝑁𝑒𝑡, 𝑁𝑒𝑥𝑡𝐻𝑜𝑝 ←

𝑙𝑖𝑛𝑘(𝑛<, 𝑎, 10) Captures	the	router	
configuration

𝑓𝑤𝑑(𝑎, 𝑛q, ? )

Checks	a	property	on	
the	forwarding	plane



Routing	Requirements	as	Datalog Queries

Paths
Packets	for	traffic	class	𝑇𝐶 must	follow	the	path	
𝑟< → ⋯ → 𝑟=

𝑓𝑤𝑑 𝑟<, 𝑡𝑐, 𝑟q ∧ ⋯∧ 𝑓𝑤𝑑 𝑟=w<, 𝑡𝑐, 𝑟=



Routing	Requirements	as	Datalog Queries

Paths
Packets	for	traffic	class	𝑇𝐶 must	follow	the	path	
𝑟< → ⋯ → 𝑟=

Traffic	isolation
The	paths	for	two	distinct	traffic	classes	𝑡𝑐<	and	𝑡𝑐q	do	
not	share	links	in	the	same	direction

𝑓𝑤𝑑 𝑟<, 𝑡𝑐, 𝑟q ∧ ⋯∧ 𝑓𝑤𝑑 𝑟=w<, 𝑡𝑐, 𝑟=

∀𝑅<, 𝑅q. 𝑓𝑤𝑑 𝑅<, 𝑡𝑐<, 𝑅q ⇒ ¬𝑓𝑤𝑑 𝑅<, 𝑡𝑐q, 𝑅q



Routing	Requirements	as	Datalog Queries

Paths
Packets	for	traffic	class	𝑇𝐶 must	follow	the	path	
𝑟< → ⋯ → 𝑟=

Traffic	isolation
The	paths	for	two	distinct	traffic	classes	𝑡𝑐<	and	𝑡𝑐q	do	
not	share	links	in	the	same	direction

𝑓𝑤𝑑 𝑟<, 𝑡𝑐, 𝑟q ∧ ⋯∧ 𝑓𝑤𝑑 𝑟=w<, 𝑡𝑐, 𝑟=

∀𝑅<, 𝑅q. 𝑓𝑤𝑑 𝑅<, 𝑡𝑐<, 𝑅q ⇒ ¬𝑓𝑤𝑑 𝑅<, 𝑡𝑐q, 𝑅q

Reachability
Packets	for	traffic	class	𝑡𝑐 can	reach	router	𝑟q	from	router	𝑟<

𝑟𝑒𝑎𝑐ℎ(𝑟<, 𝑡𝑐, 𝑟q)



Routing	Requirements	as	Datalog Queries

Paths
Packets	for	traffic	class	𝑇𝐶 must	follow	the	path	
𝑟< → ⋯ → 𝑟=

Traffic	isolation
The	paths	for	two	distinct	traffic	classes	𝑡𝑐<	and	𝑡𝑐q	do	
not	share	links	in	the	same	direction

𝑓𝑤𝑑 𝑟<, 𝑡𝑐, 𝑟q ∧ ⋯∧ 𝑓𝑤𝑑 𝑟=w<, 𝑡𝑐, 𝑟=

∀𝑅<, 𝑅q. 𝑓𝑤𝑑 𝑅<, 𝑡𝑐<, 𝑅q ⇒ ¬𝑓𝑤𝑑 𝑅<, 𝑡𝑐q, 𝑅q

Reachability
Packets	for	traffic	class	𝑡𝑐 can	reach	router	𝑟q	from	router	𝑟<

𝑟𝑒𝑎𝑐ℎ(𝑟<, 𝑡𝑐, 𝑟q)

∀𝑇𝐶, 𝑅. ¬𝑟𝑒𝑎𝑐ℎ(𝑅, 𝑇𝐶, 𝑅)Loop-freeness
The	forwarding	plane	has	no	loops



Analysis	of	Network	Configurations	in	Datalog



Analysis	of	Network	Configurations	in	Datalog

Analysis	question:	
Does	the	network	𝑵 configured	with	
𝑪 satisfy	the	requirements	𝑹?

Query	entailment:	
Does	𝑷, 𝑰 ⊨ 𝑸	hold?

Datalog program		𝑷

Datalog input 𝑰

Datalog query 𝑸

Network	specification		𝑵
(OSPF,	BGP,	MPLS,	…)

Network-wide	configuration		𝑪
(protocol	configurations	for	routers)

Routing	requirements		𝑹
(isolation,	reachability,	reliability)



Analysis	of	Network	Configurations	in	Datalog

Analysis	question:	
Does	the	network	𝑵 configured	with	
𝑪 satisfy	the	requirements	𝑹?

Query	entailment:	
Does	𝑷, 𝑰 ⊨ 𝑸	hold?

Datalog program		𝑷

Datalog input 𝑰

Datalog query 𝑸

Network	specification		𝑵
(OSPF,	BGP,	MPLS,	…)

Network-wide	configuration		𝑪
(protocol	configurations	for	routers)

Routing	requirements		𝑹
(isolation,	reachability,	reliability)

Theorem: Query	entailment	in	Datalog
is	in	PTIME



Network-wide	Configuration	Synthesis



Network-wide	Configuration	Synthesis

Synthesis	problem:	
Find	a	configuration	𝑪 such	that	𝑵
configured	with	𝑪 satisfies	𝑹

(Input)	Synthesis	problem:	
Find	an	input	𝑰 such	that	𝑷, 𝑰 ⊨ 𝑸

Network	specification		𝑵
(OSPF,	BGP,	MPLS,	…)

Network-wide	configuration		𝑪
(protocol	configurations	for	routers)

Routing	requirements		𝑹
(isolation,	reachability,	reliability)

Datalog	input 𝑰

Datalog program		𝑷

Datalog query 𝑸



Network-wide	Configuration	Synthesis

Synthesis	problem:	
Find	a	configuration	𝑪 such	that	𝑵
configured	with	𝑪 satisfies	𝑹

(Input)	Synthesis	problem:	
Find	an	input	𝑰 such	that	𝑷, 𝑰 ⊨ 𝑸

Network	specification		𝑵
(OSPF,	BGP,	MPLS,	…)

Network-wide	configuration		𝑪
(protocol	configurations	for	routers)

Routing	requirements		𝑹
(isolation,	reachability,	reliability)

Datalog	input 𝑰

Datalog program		𝑷

Datalog query 𝑸

Problems:
§ No	input	synthesis	tools	for	Datalog
§ Problem	is	undecidable



Input	Synthesis	for	Datalog

Key	idea: Reduce	to	solving	SMT	constraints



Input	Synthesis	for	Positive	Datalog
(First	Attempt)

Datalog	program		𝑷 Datalog	query	𝑸

SMT	Constraints	𝝍

𝑝𝑎𝑡ℎ 𝑋, 𝑌 ← 𝑙𝑖𝑛𝑘 𝑋, 𝑌
𝑝𝑎𝑡ℎ 𝑋, 𝑌 ← 𝑙𝑖𝑛𝑘 𝑋, 𝑍 , 𝑝𝑎𝑡ℎ(𝑍, 𝑌)

∀𝑋, 𝑌. 𝑝𝑎𝑡ℎ 𝑋, 𝑌 ⇐ 𝑙𝑖𝑛𝑘 𝑋, 𝑌
∀𝑋, 𝑌. 𝑝𝑎𝑡ℎ 𝑋, 𝑌 ⇐ ∃𝑍. 𝑙𝑖𝑛𝑘 𝑋, 𝑍 	⋀	𝑝𝑎𝑡ℎ 𝑍, 𝑌
𝑝𝑎𝑡ℎ 𝑎, 𝑐 	∧ 	¬𝑙𝑖𝑛𝑘 𝑎, 𝑐

𝑝𝑎𝑡ℎ 𝑎, 𝑐 	∧ 	¬𝑙𝑖𝑛𝑘 𝑎, 𝑐

∅

Solve	SMT	constraints

Datalog	input	𝑰

𝑝𝑎𝑡ℎ(𝑎, 𝑐) Model	𝑴 ⊨ 𝝍
Derive	input	(by	project	on	
input	predicates)

Generate	SMT	constraints
Easy	encoding…
unfortunately	it	
does	not	work

Unfortunately,	
we	get	𝑃, 𝐼 ⊭ 𝑄



Input	Synthesis	for	Positive	Datalog (1/2)

Datalog	program		𝑷 Datalog query	𝑸

SMT	Constraints	𝝍

𝑝𝑎𝑡ℎ 𝑋, 𝑌 ← 𝑙𝑖𝑛𝑘 𝑋, 𝑌
𝑝𝑎𝑡ℎ 𝑋, 𝑌 ← 𝑙𝑖𝑛𝑘 𝑋, 𝑍 , 𝑝𝑎𝑡ℎ(𝑍, 𝑌)

∀𝑋, 𝑌. 𝑝𝑎𝑡ℎ< 𝑋, 𝑌 ⇔ 𝑙𝑖𝑛𝑘 𝑋, 𝑌
∀𝑋, 𝑌. 𝑝𝑎𝑡ℎq 𝑋, 𝑌 ⇔ 𝑙𝑖𝑛𝑘 𝑋, 𝑌 	⋁	 ∃𝑍. (𝑙𝑖𝑛𝑘 𝑋, 𝑍 	⋀	𝑝𝑎𝑡ℎ< 𝑍, 𝑌
𝑝𝑎𝑡ℎq 𝑎, 𝑐 	∧ 	¬𝑙𝑖𝑛𝑘 𝑎, 𝑐

𝑝𝑎𝑡ℎ 𝑎, 𝑐 	∧ 	¬𝑙𝑖𝑛𝑘 𝑎, 𝑐

𝑙𝑖𝑛𝑘 𝑎, 𝑏 , 𝑙𝑖𝑛𝑘 𝑏, 𝑐

Solve	SMT	constraints

Datalog	input	𝑰

𝑙𝑖𝑛𝑘 𝑎, 𝑏 , 𝑙𝑖𝑛𝑘 𝑏, 𝑐 ,
𝑝𝑎𝑡ℎ< 𝑎, 𝑏 , 𝑝𝑎𝑡ℎ< 𝑏, 𝑐
𝑝𝑎𝑡ℎq 𝑎, 𝑏 , 𝑝𝑎𝑡ℎq 𝑏, 𝑐 , 𝑝𝑎𝑡ℎq 𝑎, 𝑐 Model	𝑴 ⊨ 𝝍

Derive	input

Generate	SMT	constraints Bounded	unrolling	
for	positive	queries

𝑝𝑎𝑡ℎ 𝑎, 𝑐 is	a	
positive	query



Input	Synthesis	for	Positive	Datalog (2/2)

Datalog	program		𝑷 Datalog query	𝑸

SMT	constraints	𝝍

𝑝𝑎𝑡ℎ 𝑋, 𝑌 ← 𝑙𝑖𝑛𝑘 𝑋, 𝑌
𝑝𝑎𝑡ℎ 𝑋, 𝑌 ← 𝑙𝑖𝑛𝑘 𝑋, 𝑍 , 𝑝𝑎𝑡ℎ(𝑍, 𝑌)

∀𝑋, 𝑌. 𝑝𝑎𝑡ℎ 𝑋, 𝑌 ⇐ 𝑙𝑖𝑛𝑘 𝑋, 𝑌
∀𝑋, 𝑌. 𝑝𝑎𝑡ℎ 𝑋, 𝑌 ⇐ ∃𝑍. 𝑙𝑖𝑛𝑘 𝑋, 𝑍 	⋀	𝑝𝑎𝑡ℎ 𝑍, 𝑌
¬𝑝𝑎𝑡ℎ 𝑎, 𝑐 	∧ 	¬𝑙𝑖𝑛𝑘 𝑎, 𝑐

¬𝑝𝑎𝑡ℎ 𝑎, 𝑐 	∧ 	¬𝑙𝑖𝑛𝑘 𝑎, 𝑐

{}

Solve	SMT	constraints

Datalog	input	𝑰

{} Model	𝑴 ⊨ 𝝍
Derive	input

Generate	SMT	constraints No	unrolling	for	
negative	queries

𝑝𝑎𝑡ℎ 𝑎, 𝑐 is	a	
negative	query



Input	Synthesis	for	Positive	Datalog (2/2)

Datalog	program		𝑷 Datalog query	𝑸

SMT	Constraints	𝝍

𝑝𝑎𝑡ℎ 𝑋, 𝑌 ← 𝑙𝑖𝑛𝑘 𝑋, 𝑌
𝑝𝑎𝑡ℎ 𝑋, 𝑌 ← 𝑙𝑖𝑛𝑘 𝑋, 𝑍 , 𝑝𝑎𝑡ℎ(𝑍, 𝑌)

∀𝑋, 𝑌. 𝑝𝑎𝑡ℎ 𝑋, 𝑌 ⇐ 𝑙𝑖𝑛𝑘 𝑋, 𝑌
∀𝑋, 𝑌. 𝑝𝑎𝑡ℎ 𝑋, 𝑌 ⇐ ∃𝑍. 𝑙𝑖𝑛𝑘 𝑋, 𝑍 	⋀	𝑝𝑎𝑡ℎ 𝑍, 𝑌
¬𝑝𝑎𝑡ℎ 𝑎, 𝑐 	∧ 	¬𝑙𝑖𝑛𝑘 𝑎, 𝑐

¬𝑝𝑎𝑡ℎ 𝑎, 𝑐 	∧ 	¬𝑙𝑖𝑛𝑘 𝑎, 𝑐

{}

Solve	SMT	constraints

Datalog	input	𝑰

{} Model	𝑴 ⊨ 𝝍
Derive	input

Generate	SMT	constraints No	unrolling	for	
negative	queries

𝑝𝑎𝑡ℎ 𝑎, 𝑐 is	a	
negative	query

Summary:	
• Unroll	rules	for	positive	queries,	do	not	unrolling	rules	for	negative	queries
• Combine	both	kinds	of	constraints	for	constraints	that	contain	both	positive/negative	
queries.



Input	Synthesis	for	Stratified Datalog
Suppose	we	have	a	program	P	with	strata	𝑃<,… , 𝑃=,	and	a	query	𝑄.

High-level	idea:

𝑃< 𝑃=wq 𝑃=w< 𝑃=

Synth	𝑃=

Synth	𝑃=:	Compute	input	𝐼= for	stratum	𝑃= such	that	 𝑃= [� satisfies	𝑄.

Synth	𝑃=w< …𝑃<: Compute	input	𝐼D for	stratum	𝑃D such	that	 𝑃D [b produces	the	input	𝐼D�<
synthesized	by	the	previous	step

Synth	𝑃=w<

𝑃q

Back	step:	Backtrack	to	step	Synth	𝑃D if	the	step	Synth	𝑃Dw< returns	unsat

Back	step Back	stepBack	step

Synth	𝑃<



Network-wide	Configuration	Synthesis

Network	
topology

Routing	
requirements

Automatically	configure	
routers	with	synthesis

Encode	as	a	
Datalog program

Constraints	on	the	
forwarding	plane	

computed	by	the	routers

Via	reduction	to	
input	synthesis	for	

Datalog

Datalog input	
identifies	correct	
configuration



Software	Synthesis	@	SRL

Probabilistic

Computer
networks

Security	and	
privacy

DatacentersModern	
architectures

Intent Desired
properties

Software	Synthesis
Constraint-based

Big	Code

Data	science

http://www.srl.inf.ethz.ch/

Develop	new	synthesis	techniques	to	solve	practical	system	challenges

CEGIS

Application
domains

Oracle-guided

End-user	
programming



Implementation



Implementation

The	SyNET system	(http://synet.ethz.ch)
§ Written	in	Python (≈ 4𝐾 lines	of	code)
§ Protocols	encoded	in	stratified	Datalog (≈ 100 rules)
§ Uses	the	Z3 constraint	solver.	Relies	on	linear	integer	
arithmetic	theories	(LIA).

§ Outputs	CISCO configurations
§ Supports	BGP,	OSPF,	and	static	routes

Network-specific	optimizations
§ Partial	evaluator	for	Datalog
§ Protocol-specific	constraints

! A snippet from router A
interface f0/1
ip address 10.0.0.2 255.255.255.254
ip ospf cost 10
description "To B"

interface f0/0
ip address 10.0.0.0 255.255.255.254
ip ospf cost 65530
description "To C"

interface f1/0
ip address 10.0.0.4 255.255.255.254
ip ospf cost 65530
description "To D"

!

Sample	CISCO configuration	
output	by	SyNET



Experiments



Experiment

Protocols	/ #	Traffic	classes 1	class 5	classes 10	classes

Static 1.3s 2.0s 4.0s

Static	+	OSPF 9.0s 21.3s 49.3s

Static	+	OSPF	+	BGP 13.3s 22.7s 1m19.7s

US-based	network	connecting	major	
universities	and	research	institutes	

Synthesis	Times



Scalability	Experiment

9 16 25 36 49 64

Static

Static	+	OSPF

Static	+	OSPF	+	BGP

Synthesis	Time	[s]

#	of	routers

0

10

102

103

104

105

§ Grid	topologies	with	up	to	64	routers
§ Requirements	for	10	traffic	classes

<	1h	for	static	routes

<	24h	for	Static	+	
OSPF

>24h	for	Static	+	OSPF	+	
BGP	and	networks	with	

>36	routers



Summary:	Programmable	Networks	with	Synthesis

B
High-level,	

global	routing	
requirements

Low-level,	
local	router	

configurations

Global	requirements
vs	local	configurations

Network-wide	
configuration	synthesis

Approach	scales	to	
realistic	problems

For	more	details	read	this	paper:	https://arxiv.org/abs/1611.02537


